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ABSTRACT

Many proposed applications of neural networks in machine learning, cogni-
tive/brain science, and society hinge on the feasibility of inner interpretability via
circuit discovery. This calls for empirical and theoretical explorations of viable al-
gorithmic options. Despite advances in the design and testing of heuristics, there
are concerns about their scalability and faithfulness at a time when we lack under-
standing of the complexity properties of the problems they are deployed to solve.
To address this, we study circuit discovery with classical and parameterized com-
putational complexity theory: (1) we describe a conceptual scaffolding to reason
about circuit finding queries in terms of affordances for description, explanation,
prediction and control; (2) we formalize a comprehensive set of queries that cap-
ture mechanistic explanation, and propose a formal framework for their analysis;
(3) we use it to settle the complexity of many query variants and relaxations of
practical interest on multi-layer perceptrons (part of, e.g., transformers). Our find-
ings reveal a challenging complexity landscape. Many queries are intractable (NP-
hard, Σp

2-hard), remain fixed-parameter intractable (W[1]-hard) when constrain-
ing model/circuit features (e.g., depth), and are inapproximable under additive,
multiplicative, and probabilistic approximation schemes. To navigate this land-
scape, we prove there exist transformations to tackle some of these hard problems
(NP- vs. Σp

2-complete) with better-understood heuristics, and prove the tractabil-
ity (PTIME) or fixed-parameter tractability (FPT) of more modest queries which
retain useful affordances. This framework allows us to understand the scope and
limits of interpretability queries, explore viable options, and compare their re-
source demands among existing and future architectures.

1 INTRODUCTION

As artificial neural networks (ANNs) grow in size and capabilities, Inner Interpretability — an
emerging field tasked with explaining their inner workings (Räuker et al., 2023; Vilas et al., 2024a)
— attempts to devise scalable, automated procedures to understand systems mechanistically. Many
proposed applications of neural networks in machine learning, cognitive and brain sciences, and
society, hinge on the feasibility of inner interpretability. For instance, we might have to rely on
interpretability methods to improve system safety (Bereska & Gavves, 2024), detect and control
vulnerabilities (Garcı́a-Carrasco et al., 2024), prune for efficiency (Hooker et al., 2021), find and
use task subnetworks (Zhang et al., 2024), explain internal concepts underlying decisions (Lee et al.,
2023), experiment with neuro-cognitive models of language, vision, etc. (Lindsay, 2024; Lindsay
& Bau, 2023; Pavlick, 2023), describe determinants of ANN-brain alignment (Feghhi et al., 2024;
Oota et al., 2023), improve architectures, and extract domain insights (Räuker et al., 2023). We
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will have to solve different instances of these interpretability problems, ideally automatically, for
increasingly large models. We therefore need efficient interpretability procedures, and this requires
empirical and theoretical explorations of viable algorithmic options.

Circuit discovery and its challenges. Since top-down approaches to inner interpretability (see Vilas
et al., 2024a) work their way down from high-level concepts or algorithmic hypotheses (Lieberum
et al., 2023), there is interest in a complementary bottom-up methodology: circuit discovery (see Shi
et al., 2024; Tigges et al., 2024). It centers around neuron- and circuit-level isolation or description
(e.g., Hoang-Xuan et al., 2024; Lepori et al., 2023) and attempts to build up higher-level abstractions
from this low-level foundation. The motivation is the circuit hypothesis: that models implement
their capabilities via small subnetworks (Shi et al., 2024). Advances in the design and testing of
interpretability heuristics (see Shi et al., 2024; Tigges et al., 2024) come alongside interest in the
automation of circuit discovery (e.g., Conmy et al., 2023; Ferrando & Voita, 2024; Syed et al., 2023)
and at the same time concerns about its feasibility (Voss et al., 2021; Räuker et al., 2023). One
issue is the challenge of scaling up methods to larger networks, more naturalistic datasets, and more
complex tasks (e.g., Lieberum et al., 2023; Marks et al., 2024), given their search over large search
spaces involving some manual-intensive steps (Voss et al., 2021). A related issue is that current
heuristics, though sometimes promising (e.g., Merullo et al., 2024), often yield discrepant results
(see e.g., Shi et al., 2024; Niu et al., 2023; Zhang & Nanda, 2023). They often find circuits that
are not functionally faithful (Yu et al., 2024a), or that lack the expected affordances (e.g., effects on
behavior; Shi et al., 2024). This questions whether certain localization methods yield results that
inform editing (Hase et al., 2023), and vice versa (Wang & Veitch, 2024). More broadly, we run into
‘interpretability illusions’ (Friedman et al., 2024) when our simplifications (e.g., circuits) mimic the
local input-output behavior of the system but lack global faithfulness (Jacovi & Goldberg, 2020) .

Exploring viable algorithmic options. These challenges come at a time when, despite emerg-
ing theoretical frameworks (e.g., Vilas et al., 2024a; Geiger et al., 2024), there are notable gaps
in the formalization and analysis of the computational problems that interpretability heuristics at-
tempt to solve (see e.g., Wang & Veitch, 2024, §8). Issues around scalability of circuit discovery
and faithfulness have a natural formulation in the language of Computational Complexity Theory
(Arora & Barak, 2009; Downey & Fellows, 2013). A fundamental source of breakdown of scala-
bility — which lack of faithfulness is one manifestation of — is the intrinsic resource demands of
interpretability problems. In order to design efficient and effective solutions, we need to understand
the complexity properties of circuit discovery queries and the constraints that might be leveraged to
yield the desired results. Though a decade of experimental efforts has made promising inroads, the
complexity-theoretic properties that naturally impact scalability and faithfulness remain open ques-
tions (see e.g., Subercaseaux, 2020, §6C). We settle them here by complementing these efforts with
a systematic study of the computational complexity of circuit discovery for inner interpretability. We
present a framework that allows us to (a) understand the scope and limits of interpretability queries
for description/explanation and prediction/control, (b) explore viable options, and (c) compare their
resource demands among existing and future architectures.

1.1 CONTRIBUTIONS

• We present a conceptual scaffolding to reason about circuit finding queries in terms of
affordances for description, explanation, prediction and control.

• We formalize a comprehensive set of queries that capture mechanistic explanation, and
propose a formal framework for their analysis.

• We use this framework to settle the complexity of many query variants, parameterizations,
approximation schemes and relaxations of practical interest on multi-layer perceptrons,
relevant to various architectures such as transformers.

• We demonstrate how our proof techniques can also be useful to draw links between inter-
pretability and explainability by using them to improve existing results on the latter.

1.2 OVERVIEW OF RESULTS

• We uncover a challenging complexity landscape (see Table 4) where many queries are
intractable (NP-hard, Σp

2-hard), remain fixed-parameter intractable (W[1]-hard) when con-
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straining model/circuit features (e.g., depth), and are inapproximable under additive, mul-
tiplicative, and probabilistic approximation schemes.

• We prove there exist transformations to tackle some of these hard problems (NP- vs. Σp
2-

complete) with better-understood heuristics, and prove the tractability (PTIME) or fixed-
parameter tractability (FPT) of other queries of interest, and identify open problems.

• We describe a quasi-minimality property of ANN circuits and exploit it to generate tractable
queries which retain useful affordances, and efficient algorithms to compute them.

• We establish a separation between local and global query complexity. Together with quasi-
minimality, they explain interpretability illusions of faithfulness observed in experiments.

1.3 RELATED WORK

This paper gives the first systematic exploration of the computational complexity of inner inter-
pretability problems. An adjacent area is the complexity analysis of explainability problems (Bas-
san & Katz, 2023; Ordyniak et al., 2023). It differs from our work in its focus on input queries —
aspects of the input that explain model decisions — whereas we look at the inner workings of neural
networks via circuit queries. Barceló et al. (2020) study the explainability of multi-layer perceptrons
compared to simpler models through a set of input queries. Bassan et al. (2024) extend this idea with
a comparison between local and global explainability. None of these works formalize or analyze
circuit queries (although Subercaseaux, 2020, identifies it as an open problem); we adapt the local
versus global distinction in our framework and show how our proof techniques can tighten some re-
sults on explainability queries. Ramaswamy (2019) explores a small set of circuit queries and only
on abstract biological networks modeled as general graphs, which cannot inform circuit discovery
in ANNs. More generally, we join efforts to build a solid theoretical foundation for interpretability
(Bassan & Katz, 2023; Geiger et al., 2024; Vilas et al., 2024a).

2 MECHANISTIC UNDERSTANDING OF NEURAL NETWORKS

Mechanistic understanding is a contentious topic (Ross & Bassett, 2024), but for our purposes it
will suffice to adopt a pragmatic perspective. In many cases of practical interest, we want our inter-
pretability methods to output objects that allow us to, in some limited sense, (1) describe or explain
succinctly, and (2) control or predict precisely. Such objects (e.g., circuits) should be ‘efficiently
queriable’; they are often referred to as “a way of making an explanation tractable” (Cao & Yamins,
2023). Roughly, this means that we would like short descriptions (e.g., small circuits) with use-
ful affordances (e.g., to readily answer questions and perform interventions of interest). Circuits
have the potential to fulfill these criteria (Olah et al., 2020). Here we preview some special circuits
with useful properties which we formalize and analyze later on. Table 1 maps the main circuits we
study to their corresponding affordances for description, explanation, prediction and control. Formal
definitions of circuit queries are given alongside results in Section 4 (see also Appendix).
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Table 1: Circuit affordances for description, explanation, prediction, and control.

Circuit Affordance

Description / Explanation Prediction / Control

Sufficient Circuit Which neurons suffice in isolation to cause
a behavior? Minimum: shortest description

possible in the model.

Inference in isolation. Minimal: ablating
any neuron breaks behavior of the circuit.

Quasi-minimal
Sufficient Circuit

Which neurons suffice in isolation to cause
a behavior and which is a breaking point?

Ablating the breaking point breaks behavior
of the circuit.

Necessary Circuit Which neurons are part of all circuits for a
behavior? Key subcomputations?

Ablating the neurons breaks behavior of
any sufficient circuit in the network.

Circuit Ablation &
Clamping

Which neurons are necessary in the current
configuration of the network?

Ablating/Clamping the neurons breaks
behavior of the network.

Circuit Robustness How much redundancy supports a
behavior? How resilient is it to

perturbations?

Ablating any set of neurons of size below
threshold does not break behavior.

Patched Circuit Which neurons drive a behavior in a given
input context? Control nodes?

Patching neurons changes network behavior
for inputs of interest. Steering; Editing.

Quasi-minimal
Patched Circuit

Which neurons can drive a behavior in a
given input context and which neuron is a

breaking point?

Patching neurons causes target behavior for
inputs of interest; Unpatching breaking

point breaks target behavior.
Gnostic Neurons Which neurons respond preferentially to a

certain concept?
Concept editing; guided synthesis.

3 INNER INTERPRETABILITY QUERIES AS COMPUTATIONAL PROBLEMS

We model post-hoc interpretability queries on neural networks as computational problems in order
to analyze their intrinsic complexity properties. These circuit queries also formalize criteria for
desired circuits, including those appearing in the literature, such as ‘faithfulness’, ‘completeness’,
and ‘minimality’ (Wang et al., 2022; Yu et al., 2024a).

3.1 QUERY VARIANTS: COVERAGE, SIZE AND MINIMALITY

The coverage of a circuit refers to the domain over which it behaves in a certain way (e.g., faithful
to the model’s prediction). Local circuits do so over a restricted set of inputs. Global circuits do
so over all possible inputs. The size of a circuit is measured in number of neurons. Some circuit
queries will require circuits of bounded size whereas others leave the size unbounded. A circuit with
a certain property (e.g., local sufficiency) is minimal if there is no subset of its neurons that also has
that property (not to be confused with minimum size among all such circuits present in the network).
To fit our comprehensive suite of problems, we explain how to generate problem variants and later
on only present one representative definition of each. (We simplify without loss of generality).

Problem 0. PROBLEMNAME (PN)

Input: a multi-layer perceptron M, CoverageIN, SizeIN.
Output: a Property circuit C in M of SizeOUT, such that

CoverageOUT C(x) = M(x), Suffix.

Problem 0 and Table 2 illustrate how to generate problem variants using a template, and
ProblemName = SUFFICIENT CIRCUIT as an example. Problem definitions will be given for
search (return specified circuits) or decision (answer yes/no circuit queries) versions. Others, includ-
ing optimization (return maximum/minimum-size circuits), can be generated by assigning variables.
Problems presented later on are obtained similarly. We also explore various parameterizations, ap-
proximation schemes, and relaxations that we explain in the following sections as needed.
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Table 2: Generating query variants from problem templates.

Description
variables

Query variants

Local Global

Bounded Unbounded Optimal Bounded Unbounded Optimal

CoverageIN an input x an input x an input x “ ” “ ” “ ”
CoverageOUT “ ” “ ” “ ” ∀x ∀x ∀x

SizeIN int. u ≤ |M| “ ” “ ” int. u ≤ |M| “ ” “ ”
SizeOUT size |C| ≤ u “ ” min. size size |C| ≤ u “ ” min. size
Property minimal / “ ” minimal / “ ” “ ” minimal / “ ” minimal / “ ” “ ”
Suffix if it exists,

otherwise ⊥
“ ” “ ” if it exists,

otherwise ⊥
“ ” “ ”

3.2 CLASSICAL AND PARAMETERIZED COMPLEXITY

We prove theorems about interpretability queries building on techniques from classical (Garey &
Johnson, 1979) and parameterized complexity (Downey & Fellows, 2013). Here we give a brief,
informal overview of the main concepts underlying our analyses (see Appendix for extensive formal
definitions). We will explore beyond classical polynomial-time tractability (PTIME) by studying
fixed-parameter tractability (FPT). This allows a more fine-grained look at the sources of complex-
ity of problems. NP-hard queries are considered intractable because they cannot be computed by
polynomial-time algorithms. However, a relaxation of interest is to allow unreasonable resource
demands as long as they are contained in problem parameters that can be kept small in practice.
Parameterizing a given neural network and requested circuit leads to parameterized problems (see
Table 3 for problem parameters we study later). Parameterized queries in FPT admit fixed-parameter
tractable algorithms. W-hard queries, however, do not. We study counting problems via analogous
classes #P and #W[1]. We also investigate completeness for NP and classes higher up the polyno-
mial hierarchy such as Σp

2 and Πp
2 to explore the possibility to tackle hard interpretability problems

with better-understood methods for well-known NP-complete problems (de Haan & Szeider, 2017).
Most proof techniques involve various kinds of reductions between computational problems.

Table 3: Model and circuit parameterizations.

Parameter description Notation

Model (given) Circuit (requested)

Number of layers (depth) L̂ l̂

Maximum layer width L̂w l̂w
Total number of units1 Û = |M| ≤ L̂ · L̂w |C| = û

Number of input units ÛI ûI

Number of output units ÛO ûO

Maximum weight Ŵ ŵ

Maximum bias B̂ b̂

3.3 APPROXIMATION

Although sometimes computing optimal solutions is intractable, it is conceivable we could devise
tractable interpretability procedures to obtain approximate solutions that are useful in practice. We
consider 5 notions of approximation: additive, multiplicative, and three probabilistic schemes (see
Appendix for formal definitions). Additive approximation algorithms return solutions at most a
fixed distance c away from optimal (e.g., from the minimum-sized circuit), ensuring that errors

1Note the colored parameters bound the input size if bounded (hence vacuously making problems tractable).
We avoid this in analyses.
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cannot get impractically large (c-approximability). Multiplicative approximation returns solutions
at most a factor of optimal away. Some hard problems allow for polynomial-time multiplicative
approximation schemes (PTAS) where we can get arbitrarily close to optimal solutions as long as
we expend increasing compute time (Ausiello et al., 1999). Finally, consider three other types of
probabilistic polynomial-time approximability (henceforth 3PA) that may be acceptable in situations
where always getting the correct output for an input is not required: (1) algorithms that always run in
polynomial time and produce the correct output for a given input in all but a small number of cases
(Hemaspaandra & Williams, 2012); (2) algorithms that always run in polynomial time and produce
the correct output for a given input with high probability (Motwani & Raghavan, 1995); and (3)
algorithms that run in polynomial time with high probability but are always correct (Gill, 1977).

3.4 MODEL ARCHITECTURE

The Multi-Layer Perceptron (MLP) is a natural first step in our exploration because (a) it is proving
useful as a stepping stone in current experimental (e.g., Lampinen et al., 2024) and theoretical work
(e.g., Rossem & Saxe, 2024; McInerney & Burke, 2023); (b) it exist as a leading standalone archi-
tecture (Yu et al., 2024b), as the central element of all-MLP architectures (Tolstikhin et al., 2021),
and as a key component of state-of-the-art models such as transformers (Vaswani et al., 2017); (c)
they are of active interest to the interpretability community (e.g., Geva et al., 2022; 2021; Dai et al.,
2022; Meng et al., 2024; 2022; Niu et al., 2023; Vilas et al., 2024b; Hanna et al., 2023); and (d) we
can relate our findings on the complexity of inner interpretability to those of explainability which
also begins with MLPs (e.g., Barceló et al., 2020; Bassan et al., 2024). Although MLP blocks can
be taken as a unit to simplify search, it is recommended to investigate MLPs by treating each neuron
as a unit (e.g., Gurnee et al., 2023; Cammarata et al., 2020; Olah et al., 2017), as it better reflects
the semantics of computations in neural networks (Lieberum et al., 2023, sec. 2.3.1). We adopt this
perspective in our analyses. We write M for an MLP model and M(x) for its output on input vector
x. Its size |M| is the number of neurons. A circuit C is a subset of neurons which induce a (possibly
end-to-end) subgraph of M (see Appendix for formal definitions).

4 RESULTS & DISCUSSION: THE COMPLEXITY OF CIRCUIT DISCOVERY

In this section we present each circuit query with its computational problem and a discussion of the
complexity profile we obtain across variants, relaxations, and parameterizations. For an overview of
the results for all queries, see Table 4. Proofs of the theorems can be found in the Appendix.

4.1 SUFFICIENT CIRCUIT

Sufficient circuits (SCs) are sets of neurons connected end-to-end that suffice, in isolation, to repro-
duce some model behavior over an input domain. Therefore, they are conceptually related to the
desired outcome of masking components that do not contribute to the behavior of interest (small,
parameter-efficient subnetworks). SCs remain relevant as, despite valid criticisms of zero-ablation
(e.g., Conmy et al., 2023), circuit discovery through pruning might be justified (Yu et al., 2024a).

Problem 1. BOUNDED LOCALLY SUFFICIENT CIRCUIT (BLSC)

Input: a multi-layer perceptron M, an input vector x, and an integer u ≤ |M|.
Output: a circuit C in M of size |C| ≤ u, such that C(x) = M(x), if it exists, otherwise ⊥.

We find that many variants of SC are NP-hard (see Table 4). Counterintuitively, this intractability
does not depend straightfowardly on parameters such as network depth (W[1]-hard relative to P).
Therefore, hardness is not mitigated by keeping models shallow. Given this barrier, we explore
the possibility of obtaining approximate solutions but find that hard SC variants are inapproximable
relative to all schemes in Section 3.3. An alternative is to consider the membership of these problems
in a well-studied class whose solvers are better understood than interpretability heuristics (de Haan
& Szeider, 2017). We prove that local versions of SC are NP-complete. This implies there exist
efficient transformations from instances of SC to those of the satisfiability problem (SAT), opening
up the possibility to borrow techniques that work reasonably well in practice for SAT (Biere et al.,
2021). Interestingly, this is not possible for the global version, which we prove is complete for a
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class higher up the complexity hierarchy (Σp
2-complete). This result establishes a formal separation

between local and global query complexity that partly explains ‘interpretability illusions’ (Friedman
et al., 2024; Yu et al., 2024a) arising in practice due to local but not global faithfulness.

Next we explore the following alternative scenario. Given a model and a target behavior, if we
knew that SCs with some desired property (e.g., minimality) are abundant, this would provide some
confidence in the ability of heuristic search to stumble upon one of them. To explore this, we analyze
various queries where the output is a count of the number of SCs (i.e., counting problems). We find
that both local and global, bounded and unbounded variants are #P-complete and remain intractable
(#W[1]-hard) when parameterized by many network features including depth (Table 3).

The hardness profile of SC over all these variants calls for exploring more substantial relaxations. We
introduce the notion of quasi-minimality of SCs for this purpose and later demonstrate its usefulness
beyond this particular problem. Any neuron in a minimal/minimum SC is a breaking point in the
sense that removing it will break the target behavior. In quasi-minimal SCs we are guaranteed to
know at least one neuron that causes this breakdown, though there may be other neurons that do not.

Problem 2. UNBOUNDED QUASI-MINIMAL LOCALLY SUFFICIENT CIRCUIT (UQLSC)

Input: a multi-layer perceptron M, and an input vector x.
Output: a circuit C in M and a neuron v ∈ C such that

C(x) = M(x) and [C \ {v}](x) ̸= M(x).

By introducing this relaxation, which gives up some affordances but retains others of interest, we
get a feasible interpretability query. UQLSC is in PTIME. We describe an efficient algorithm to
compute it which can be heuristically biased towards finding smaller circuits and combined with
techniques that exploit weights and gradients (see Appendix).

4.2 GNOSTIC NEURON

Gnostic neurons, sometimes called ‘grandmother neurons’ in neuroscience (Gale et al., 2020) and
‘concept neurons’ or ‘object detectors’ in AI (e.g., Bau et al., 2020), are one of the oldest and still
current interpretability queries of interest (see also ‘knowledge neurons’; Niu et al., 2023).

Problem 3. BOUNDED GNOSTIC NEURONS (BGN)

Input: A multi-layer perceptron M and two sets of input vectors X and Y , an integer k,
and an activation threshold t.

Output: A set of neurons V in M of size |V | ≥ k such that ∀v∈V it is the case that ∀x∈X
computing M(x) produces activations Av

x ≥ t and ∀y∈Y : Av
y < t,

if it exists, otherwise ⊥.

It is probably not a coincidence that (i) the idea and search for such neurons has emerged early and
remained popular, and (ii) it is a tractable problem. BGN is in PTIME. Alternatives might require
GNs to have some behavioral effect when intervened; such variants would remain tractable.

4.3 CIRCUIT ABLATION AND CLAMPING

The idea that some neurons perform key subcomputations for certain tasks naturally leads to the
hypothesis that ablating them should have downstream effects on the corresponding model behav-
iors. Searching for neuron sets with this property has been one strategy (i.e., zero-ablation) to get at
important circuits (Wang & Veitch, 2024). The circuit ablation (CA) problem formalizes this idea.

Problem 4. BOUNDED LOCAL CIRCUIT ABLATION (BLCA)

Input: a multi-layer perceptron M, an input vector x, and an integer u ≤ |M|.
Output: a subset of neurons C in M of size |C| ≤ u, such that [M\ C](x) ̸= M(x),

if it exists, otherwise ⊥.
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A difference between CAs and minimal SCs is that the former can be interpreted as a possibly non-
minimal breaking set in the context of the whole network whereas the latter is by default a minimal
breaking set when the SC is taken in isolation. In this sense, CA can be seen as a less stringent
criterion for circuit affordances. A related idea is circuit clamping (CC): fixing the activations of
certain neurons to a level that produces a change in the behavior of interest.

Problem 5. BOUNDED LOCAL CIRCUIT CLAMPING (BLCC)

Input: a multi-layer perceptron M, an input vector x, a value r, and an integer u with
1 < u ≤ |M|.

Output: a subset of neurons C in M of size |C| ≤ u, such that for the M∗ induced by
clamping all c ∈ C to value r, M∗(x) ̸= M(x), if it exists, otherwise ⊥.

Despite these more modest criteria, we find that both the local and global variants of CA and CC are
NP-hard, fixed-parameter intractable W[1]-hard relative to various parameters, and inapproximable
in all 5 senses studied. However, we prove these problems are in NP-complete, which opens up
practical options not available for other problems we study (see remarks in Section 4.1).

4.4 CIRCUIT PATCHING

A critique of zero-ablation is the arbitrariness of the value, leading to alternatives such as mean-
ablation (e.g., Wang et al., 2022). A related contrast is studying circuits in isolation versus embedded
in surrounding subnetworks. Activation patching (Ghandeharioun et al., 2024; Zhang & Nanda,
2023) and path patching (Goldowsky-Dill et al., 2023) try to pinpoint which activations play an
in-context role in model behavior over a domain, which inspires the circuit patching (CP) problem.

Problem 6. BOUNDED LOCAL CIRCUIT PATCHING (BLCP)

Input: a multi-layer perceptron M, an integer k, an input vector y, and a set X of input
vectors.

Output: a subset C in M of size |C| ≤ k, such that for the M∗ induced by patching C with
activations from M(y) and M\ C with activations from M(x), M∗(x) = M(y)
for all x ∈ X , if it exists, otherwise ⊥.

We find that local/global variants are intractable (NP-hard) in a way that does not depend on pa-
rameters such as network depth or size of the patched circuit (W[1]-hard), and are inapproximable
({c,PTAS, 3PA}-inapprox.). Although we also prove the local variant of CP is NP-complete and
therefore approachable in practice with solvers for hard problems not available for the global vari-
ants (see remarks in Section 4.1), these complexity barriers motivate exploring further relaxations.
With some modifications the idea of quasi-minimality can be repurposed to do useful work here.

Problem 7. UNBOUNDED QUASI-MINIMAL LOCAL CIRCUIT PATCHING (UQLCP)

Input: a multi-layer perceptron M, an input vector y, and a set X of input vectors.
Output: a subset C in M and a neuron v ∈ C, such that for the M∗ induced by patching C

with activations from M(y) and M\ C with activations from M(x),
∀x∈X : M∗(x) = M(y), and for M′ induced by patching identically
except for v ∈ C, ∃x∈X : M′(x) ̸= M(y).

In this way we obtain a tractable query (PTIME) for quasi-minimal patching, sidestepping barriers
while retaining some useful affordances (see Table 1). We present an algorithm to compute UQLCP
efficiently that can be combined with strategies exploiting weights and gradients (see Appendix).
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Table 4: Classical and parameterized complexity results by problem variant.

Classical &
parameterized problems2

PM = {L̂, ÛI , ÛO, Ŵ , B̂}
PC = {l̂, l̂w, û, ûI , ûO, ŵ, b̂}

Problem variants

Local Global

Decision/Search Optimization Decision/Search Optimization

SUFFICIENT CIRCUIT (SC) NP-complete {c, PTAS, 3PA}-
inapproximable

Σp
2-complete {c, PTAS, 3PA}-

inapproximable
P-SC

(P = PM ∪ PC)
W[1]-hard {c, PTAS, 3PA}-

inapproximable
W[1]-hard {c, PTAS, 3PA}-

inapproximable
Minimal SC NP-complete ? ∈ Σp

2

NP-hard
?

P-Minimal SC W[1]-hard ? W[1]-hard ?
Unbounded Minimal SC ?

N
A

∈ Σp
2

NP-hard N
AP-Unbounded Minimal SC ? ?

Unbounded Quasi-Minimal SC PTIME ?

Count SC #P-complete

N
A

#P-hard

N
A

P-Count SC #W[1]-hard #W[1]-hard
Count Minimal SC #P-complete #P-hard

P-Count Minimal SC #W[1]-hard #W[1]-hard
Count Unbounded Minimal SC #P-complete #P-hard

GNOSTIC NEURON (GN) PTIME N/A ? N/A

CIRCUIT ABLATION (CA) NP-complete {c, PTAS, 3PA}-
inapproximable

∈ Σp
2

NP-hard
{c, PTAS, 3PA}-
inapproximable

{L̂, ÛI , ÛO, Ŵ , B̂, û}-CA W[1]-hard {c, PTAS, 3PA}-
inapproximable

W[1]-hard {c, PTAS, 3PA}-
inapproximable

CIRCUIT CLAMPING (CC) NP-complete {c, PTAS, 3PA}-
inapproximable

∈ Σp
2

NP-hard
{c, PTAS, 3PA}-
inapproximable

{L̂, ÛO, Ŵ , B̂, û}-CC W[1]-hard {c, PTAS, 3PA}-
inapproximable

W[1]-hard {c, PTAS, 3PA}-
inapproximable

CIRCUIT PATCHING (CP) NP-complete {c, PTAS, 3PA}-
inapproximable

∈ Σp
2

NP-hard
{c, PTAS, 3PA}-
inapproximable

{L̂, ÛO, Ŵ , B̂, û}-CP W[2]-hard {c, PTAS, 3PA}-
inapproximable

W[2]-hard {c, PTAS, 3PA}-
inapproximable

Unbounded Quasi-Minimal CP PTIME N/A ? N/A

NECESSARY CIRCUIT (NC) ∈ Σp
2

NP-hard
{c, PTAS, 3PA}-
inapproximable

∈ Σp
2

NP-hard
{c, PTAS, 3PA}-
inapproximable

{L̂, ÛI , ÛO, Ŵ , û}-NC W[1]-hard {c, PTAS, 3PA}-
inapproximable

W[1]-hard {c, PTAS, 3PA}-
inapproximable

Count NC ? ? ? ?

CIRCUIT ROBUSTNESS (CR) coNP-complete ? ∈ Πp
2

coNP-hard
?

{L̂, ÛI , ÛO, Ŵ , B̂, û}-CR coW[1]-hard ? coW[1]-hard ?
{|H|}-CR FPT FPT ? ?

{|H|, ÛI}-CR FPT FPT FPT FPT

SUFFICIENT REASONS (SR) ∈ Σp
2

NP-hard
{3PA}-

inapproximable N
A{L̂, ÛO, Ŵ , B̂, û}-SR W[1]-hard {3PA}-

inapproximable
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4.5 NECESSARY CIRCUIT

The criterion of necessity is a stringent one, and consequently necessary circuits (NCs) carry power-
ful affordances (see Table 1). Since neurons in NCs collectively interact with all possible sufficient
circuits for a target behavior, they are candidates to describe key task subcomputations and interven-
ing on them is guaranteed to have effects even in the presence of high redundance.

Problem 8. BOUNDED GLOBALLY NECESSARY CIRCUIT (BGNC)

Input: A multi-layer perceptron M, and an integer k.
Output: A subset S of neurons in M of size |S| ≤ k, such that S ∩C ≠ ∅ for every circuit C

in M that is sufficient relative to all possible input vectors, if it exists, otherwise ⊥.

Unfortunately both local and global versions of NC are NP-hard (in Σp
2; Table 4), remain intractable

even when keeping parameters such as network depth, number of input and output neurons, and
others small (Table 3), and does not admit any of the available approximation schemes (Section 3.3).
Tractable versions of NC are unlikely unless substantial restrictions or relaxations are introduced.

4.6 CIRCUIT ROBUSTNESS

A behavior of interest might be over-determined or resilient in the sense that many circuits in the
model implement it and one can take over when the other breaks down. This is related to the notion
of redundancy used in neuroscience (e.g., Nanda et al., 2023). Intuitively, when a model implements
a task in this way, the behavior should be more robust to a number of perturbations. The possibility
of verifying it experimentally motivates the circuit robustness (CR) problem.

Problem 9. BOUNDED LOCAL CIRCUIT ROBUSTNESS (BLCR)

Input: A multi-layer perceptron M, a subset H of M, an input vector x, and an integer k
with 1 ≤ k ≤ |H|.

Output: <YES> if for each subset H ′ ⊆ H , with |H ′| ≤ k, M(x) = [M\H ′](x),
otherwise <NO>.

We find that Local CR is coNP-complete while Global CR is in Πp
2 and coNP-hard. It remains

fixed-parameter intractable (coW[1]-hard) relative to model parameters (Table 3). Pushing further,
we explore parameterizing CR by {|H|} and prove fixed-parameter tractability of {|H|}-CR which
holds both for the local and global versions. There exist algorithms for CR that scale well as long as
|H| is reasonable; a scenario that might be useful to probe robustness in practice. This wraps up our
results for circuit queries. We briefly digress into explainability before discussing some implications.

4.7 SUFFICIENT REASONS

Understanding the sufficient reasons (SR) for a model decision in terms of input features consists
of knowledge of values of the input components that are enough to determine the output. Given a
model decision on an input, the most interesting reasons are those with the least components.

Problem 10. BOUNDED LOCAL SUFFICIENT REASONS (BLSR)

Input: a multi-layer perceptron M, an input vector x of length |x| = ûI , and an integer k
with 1 ≤ k ≤ ûI .

Output: a subset xs of x of size |xs| = k, such that for every possible completion xc of xs

M(xc) = M(x), if it exists, otherwise ⊥.

To demonstrate the usefulness of our framework beyond inner interpretability, we show how it links
to explainability. Using our techniques for circuit queries, we significantly tighten existing results

2Problem versions are for bounded size circuits unless otherwise stated. Each cell contains the complexity
of the problem variant in terms of classical and FP (in)tractability, membership in complexity classes, and
various approximation schemes. ‘?’ marks potentially fruitful open problems. ‘N/A’ stands for not applicable.
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for SR (Barceló et al., 2020; Wäldchen et al., 2021) by proving that hardness (NP-hard, W[1]-hard,
3PA-inapprox.) holds even when the model has only one hidden layer.

5 IMPLICATIONS, LIMITATIONS, AND FUTURE DIRECTIONS

We presented a framework based on parameterized complexity to accompany experiments on inner
interpretability with theoretical explorations of viable algorithms. With this grasp of circuit query
complexity, we can understand the challenges of scalability and the mixed outcomes of experiments
with heuristics for circuit discovery. We can explain ‘interpretability illusions’ (Friedman et al.,
2024) due to lack of faithfulness, minimality (e.g., Shi et al., 2024; Yu et al., 2024a) and other affor-
dances (Wang & Veitch, 2024; Hase et al., 2023), in terms of the kinds of circuits that our current
heuristics are well-equipped to discover. For instance, consider the algorithm for automated circuit
discovery proposed by Conmy et al. (2023), which eliminates one network component at a time if
the consequence on behavior is reasonably small. Since this algorithm runs in polynomial time,
it is not likely to solve the problems proven hard here, such as MINIMAL SUFFICIENT CIRCUIT.
However, one reason we observe interesting results in some cases is because it is well-equipped to
solve QUASI-MINIMAL CIRCUIT problems. As our conceptual and formal analyses show, quasi-
minimal circuits can mimic various desirable aspects of sufficient circuits (Table 1), and the former
can be found tractably (results for Problem 2 and Problem 7). Indeed, from our proof of tractability
of QMSC (see Appendix) we get a hint on how to improve the running time of the algorithm in
Conmy et al. (2023) while retaining guarantees of quasi-minimality; namely, by using a variant of
binary search to cut the number of forward passes from n to log2(n). At the same time, understand-
ing these properties of circuit discovery heuristics helps us explain observed discrepancies: why
we often see (1) lack of faithfulness (i.e., global coverage is out of reach for QMC algorithms), (2)
non-minimality (i.e., QM circuits can have many non-breaking points), and (3) large variability in
performance across tasks and analysis parameters (e.g., Shi et al., 2024; Conmy et al., 2023).

Our results for inner interpretability complement those of explainability (e.g., Barceló et al., 2020;
Bassan et al., 2024; Wäldchen et al., 2021). These two complexity aspects can be studied together
for different architectures to assess their intrinsic interpretability. As in explainability, our findings
suggest interpretability methods can be sought relative to additional query restrictions or relaxations.
We have explored many and some yield tractability while retaining affordances of practical interest.

One possibly fruitful avenue we have not explored is to conduct an empirical and formal charac-
terization of learned weights in search of structure that could potentially distinguish conditions of
(in)tractability. Another avenue is to design queries that partially rely on mid-level abstractions
(Vilas et al., 2024a) to bridge the gap between circuits and human-intelligible algorithms (e.g., key-
value mechanisms; Geva et al., 2022; Vilas et al., 2024b).
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here on the side of rigor, here we will use more cumbersome notation that we avoided in the main
manuscript for succinctness.
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